The 2nd Workshop on Promotion of Energy Science Education for Sustainable Development in Cambodia

Current Energy Situation and Needs to Transform Toward Sustainable System

Assoc. Prof. Dr. Nguyen Manh Khai, HUS-VNU

Assoc. Prof. Dr. Nguyen Thi Ha, HUS-VNU

Chanthea KHUN, Lecturer

Institute of Technology of Cambodia

Contents

- 1. Current Energy Status and Future Energy Scenarios, ASEAN
- 2. Environmental Cost and Social Cost
- 3. Economic Issues
- 4. Ethics and Behavior Change Issues

Part 1: Current Status and Future Energy Scenarios

- 1. Introduction
- 2. World Energy Resources and Demand
- 3. Future Energy Scenarios

1.1 Introduction

- Energy is a resource coming from two main sources: solar energy and geothermal energy"
 - Solar energy exists in main types: solar radiation, bioenergy (biomass), energy occupied in the movement of atmosphere and hydrosphere (wind, wave, sea current, tide, and river)
 - oGeothermal Energy includes: thermal energy in volcanoes, hot springs, geysers and radioactive energy.

Units of Energy

Joule (James Prescott Joule):
 E = mc² (kg.m².s⁻²)

By CGS system (centimeter-gram-second): $1 \text{ g.cm}^2/\text{s}^2 = 1.0*10^{-7} \text{ Joule}$

- 1 BTU = 1054 Joule
- $\circ 1 \text{ kWh} = 3.6*10^6 \text{ J}$
- Work and Calorie are Energy

1 cal = 4.186 Joules

1 kcal = 4,186 Joules

Energy Use

- Economic development and energy consumption
- Energy resource and its utilization
 - ☐ Last 250 years, powered by fossil fuels
 - ☐ Current status
 - Resources availability
 - Global warming

Energy System

1.2 World Energy Resources and Demand

World Energy Resources

Source	Annual energy supply	Ratio of annual energy supply/energy use	Total reserve
Solar	3,900,000 EJ/y*	8,700	
Wind	6,000 EJ/y*	13	
Hydro	149 EJ/y*	0.33	
Bioenergy	2,900 EJ/y*	6.5	
Ocean	7,400 EJ/y*	17	
Geothermal	140,000,000 EJ/y*	31,000	
Total conventional	396 EJ/y*	104	46,700 EJ
fossil fuel reserve			
Total	0.06 EJ/y**	42	18,800 EJ
unconventional			
fossil fuel reserve			
Total Uranium	31 EJ/y***	6.7 - 23	3,000- 10,500 EJ
reserve			
Current global	448 EJ/y (2004)*	1	
energy use	Conv. Biofuels adds -		
	45 EJ/y		

Consumption of Energy Sources

World consumption

Million tonnes oil equivalent

World primary energy consumption grew by a below-average 1.8% in 2012. Growth was below average in all regions except Africa. Oil remains the world's leading fuel, accounting for 33.1% of global energy consumption, but this figure is the lowest share on record and oil has lost market share for 13 years in a row. Hydroelectric output and other renewables in power generation both reached record shares of global primary energy consumption (6.7% and 1.9%, respectively).

World Electricity Generation by Source

Energy Use – By Region, 2011

World Oil Reserves 2012

World Oil Production and Consumption, 2012

Oil production grow up every year in every region

World Oil Production and Trade, 2011

Top ten net oil importers, 2011*

Emirates
Source: U.S. Energy Information Administration

World Natural Gas Reserves, 2012

Distribution of proved reserves in 1992, 2002 and 2012 Percentage

World Natural Gas Production / Consumption, 2012

World Natural Gas Trade 2012

World Coal Reserves-to-Production Ratios by Region, 2012

Coal Exporter/Importer

Top 10 coal net-exporters and importers, 2008

2008 net volumes of biggest coal exporters

2008 nettrade volumes of biggestcoal importers

World Coal Consumption, 2010

- Coal production and consumption by region, 2010 (million tons of oil equivalent)
- ~ 50% of global coal consumption was in China.

Cambodia: Thermal Power Plant, Coal

- Install Capacity: 2 x 50 MW
- Location: Sihanouk Province
- Operation Date: 2013

Sihanouk Ville Coal Power Plant N.1

World Hydropower

- Hydroelectricity was the main rapidly growing major fuel in 2009.
- The growth was led by China, Brazil and US.

- Install Capacity: 18 MW (2 x 9 MW)
- Reservoir
- Location: Koh Kong Province
- Operating Date: 27-Sept-2012

Kirirom III Hydro Power Plant

- Install Capacity: 194.1 MW
 (3 x 60 MW, 3 x 3.1 MW,
 0.8 MW, 4 MW)
- Reservoir
- Location: Kampot Province
- Operating Date: 30-Dec-2012

Kamchay Hydro Power Plant

- Install Capacity: 120 MW(4 x 25 MW, 2 x10 MW)
- Reservoir
- Location: Pursat Province
- Under Commissioning

Hydro PP: Atay Hydro Power Plant

- Install Capacity: 246 MW (3 x 82 MW)
- Reservoir
- Location: Koh Kong Province
- Operation Date: 2014

Tatay Hydro Power Plant

- Install Capacity: 338 MW
 (2 x 103 MW, 2 x 66 MW)
- 103 MW is under commissioning
- Reservoir
- Location: Koh Kong Province
- Operation Date: 2014

Lower Reussey Chroum Hydro Power Plant

Energy Generation by Fuel Type 2011-15

World Nuclear, 2009

- Vietnam will construct nuclear power plant in near future

World Nuclear Energy, 2012

30

Renewable Energy Potential

2008 world primary energy consumption = 11,500 mtoe = 0.54x 10^{18} Joule

Resource	Technical potential (exa joule per year)	Theoretical potential (exa joule per year)
Hydropower	50	150
Biomass Energy	>250	2,900
Solar Energy	>1,600	3,900,000
Wind Energy	600	6,000
Geothermal Energy	5,000	140,000,000
Ocean Energy	-	7,400
Total	>7,500	>143,000,000

1 exa joule= 10¹⁸ Joule 1 toe = 42 GJ

Renewable Energy Potential

Renewable Energy Potential

Solar Photovoltaic

Source: EPIA, 2012

Global PV Annual Installations 2000-2012 (MW)

World Wind Energy Status

Total Installed Capacity 2010-2013 [MW]

Wind Energy by OECD Countries

World Bio Energy Status

Share of Bioenergy in the World Primary Energy Mix

Source: Bioenergy – a Sustainable and Reliable Energy Source. IEA Bioenergy ExCo:2009:05

Bio Energy Status by Regions

Bio Energy Status in ASEAN

ASEAN electricity generation from renewables

Future Energy Scenarios

IEO 2010 Reference case, IEA Reference Scenario – 2008

IEA New Policies Scenario – 2010

WEC Energy Policy Scenario for – 2050

Group Discussions

- 1. Sustainable Energy Development Plans
- 2. Gender in Sustainable Development

3. Renewable Energy Issue and Environmental Impacts. Etc.

Contents

- 1. Current Energy Status and Future Energy Scenarios
- 2. Environmental Cost and Social Cost

3. Ethics and Behavior Change Issues

Part 2: Environmental Cost and Social Cost

- 1. Review Concepts
- 2. Environmental Cost
- 3. Social Cost
- 4. Environmental Impacts

Review Concepts

The **Environment**, which has many components:

- □ Physical: geology, topography, soils, water resources, air quality, forest, etc.
- □ Biological: fauna, flora, biodiversity, ecosystems...
- Social: including culture, religion and local values.

The Impacts:

- <u>Conceptual motivation</u>: Development cannot be sustainable unless it considers environmental impacts
- Other tangible benefits: Avoid problems before they occurlower project costs in the long-term
- Provides decision-makers with alternatives
- Provides benefits to public such as opportunity to learn, express concerns, and influence decision-making process

Environmental Cost

- □ Direct cost to prevent or reduce environmental pollution.
- □ Or indirect cost of using resources, damage ecosystem.
- □ In some cases, the environmental treatment cost can be taken back through recycle, reuse, i.e. wastewater..., by reducing medical treatment, healthcare cost, etc.

Social Cost

- □ Social Cost is the cost to society as a whole from an event, action or change policy.
- □ Including negative externalities and does not count costs that are transfers to others, in contrast to private cost.
- □ Marginal Social Cost : MSC

$$MSC = MPC + MEC$$

MPC: Marginal Private Cost

MEC: Marginal External Cost

Social Cost Evaluation Criteria (1)

Kind of Impact	Criteria	Goals
Emigration	Number of emigrants% ethnic minority	Proper resettlement social equity
Culture and Social Impacts	 Impact culture and religion Lose of important culture monuments Impact culture organizations Change the mean to access the outside world. Lack of community participant in planning. Increase social crimes 	Properly compensation

Social Cost Evaluation Criteria (2)

Kind of Impact	Criteria	Goals
Impact on job	Change the mean to access the natural resourcesLose agriculture lands	- Properly compensation
	 Job opportunity Limit the area for resettlement and cultivation 	Create jobs & support small enterprisesArea for resettlement
Loss of biodiversity	 A large area with high biodiversity is influenced Reservation zone is affected 	BiodiversityProgramFollowregulation of
	• Rivers, water base	reservation zone - Reduce

Social Cost Evaluation Criteria (3)

Kind of Impact	Criteria	Goals
Loss of biodiversity	 Rivers, water base Loss of wetland Impact cold-water ecosystems Impact Immigrant bird, fish and wildlife 	 Reduce Reduce Reduce Design electric line, dam and wind turbine properly
Loss of access to natural resources	Loss of forestFishingIncrease in soil erosionInfluence landscape	Replanting programProperly compensation

Social Cost Evaluation Criteria —An operational Risks Reduction Model for Population Resettlement (IRR) -1

Risks	Mitigation Activities	Proposed Methods
Landless	 Land-based resettlement 	- Land compensation
Jobless	 Re-employment 	- More investment needed
Homeless	 House reconstruction 	 House compensation Subsidy
Marginalization	 Social Inclusion 	Financial support for resettlementDirectly support impacted people
Increase morbidity and mortality	 Improve health care service 	Construct clean waterand sanitation systemTraining on health careVillage health carecenter

Social Cost Evaluation Criteria —An operational Risks Reduction Model for Population Resettlement (IRR) -2

Source: IPCC (2007); EXIT Disclaimer based on global emissions from 2004. Details about the sources included in these estimates can be found in the Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

2008 Global CO₂ Emissions from Fossil Fuel Combustion and some Industrial Processes (million metric tons of CO₂)

Source: National CO₂ Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751-2008.

Source: IPCC (2007); EXIT Disclaimer based on global emissions from 2004. Details about the sources included in these estimates can be found in the Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

Figure 3. Global Carbon Dioxide Emissions by Region, 1990–2008

Energy Supply emissions mostly CO₂ (some non-CO₂ in industry and other energy related).

Non-energy emissions are CO₂ (land use) and non-CO₂ (Agriculture and waste)

Mitigation Policies for Reduction of Greenhouse Gas Emissions

Energy Efficiency

Use of Renewable Energy Sources

Forest Preservation

Moderating Influences

Population Density and Growth

Level of Technological Development

Standard of Living and Local Environmental Condition

Preexisting Health Status

Quality and Access to Health Care

Public Health Infrastructure

Adaptation Measures

Vaccination Programs

Disease Surveillance

Protective Technologies

Weather Forecasting and Warning Systems

Emergency Management and Disaster Preparedness

Public Health Education and Prevention

Legislation and Administration

Health Impact

- □ Increase harmful effects on human body due to the change of weather
- □ Reduce cold effect
- More accidents due to natural disasters
- □ More disease, infection
- □ Reduce body immunity
- □ Promote the development of disease-carrying owners
- □ Lengthen the epidemic period, etc.

Environmental Impact

- □ Impact of Sea Level Rise
- □ Impact of Changes in Storm, Surge and Precipitation

Environmental Impact

- ☐ Impact of Temperature, Energy Demand and Energy Supply
- Impact of Water Availability
- ☐ Impact of Wind Speed, Cloud Cover and Renewable Energy
- □ Changes in the Timing of Seasonal Life-Cycle Events

Environmental Impact

- ☐ Flood and Storm Occur in Coastal Area
- □ Lost of wetlands and erosion of sea coast
- □ Affect on coastal infrastructure

Group Discussion

- 1. The Environmental Cost and Social Cost of Hydro Power Plant Construction.
- 2. Environmental Cost and Social Cost of Coal Combustion Thermal Power Plant

Content

- 1. Current Energy Status and Future Energy Scenarios
- 2. Environmental Cost and Social Cost

3. Ethics and Behavior Change Issues

Part 3: Ethics and Behavior Change Issues

1. Overview of Behavior

2. Ethics and Behavior Change Issues

3. Propose Solutions

Overview of Behavior

The **Human Behavior** refers to the range of behaviors exhibited by humans and which are influenced by culture, attitudes, emotions, values and ethics...

Why do we need to change behavior?

Behavioral change in Energy Use

- Green Economic Approach
- Selection of Energy Substitute

Ethics and Behavior Change

Ethics and Behavior Change

FOAM Framework: Focus on Opportunity, Ability and Motivation

- F –Focus: Study on behavior, study on Objectives
- O –Opportunity: Approach, Product, Social Values
- A –Ability: Knowledge and Social Support
- M –Motivation: Belief and Attitude

Ethics and Behavior Change

FOAM > < KAP

- K –Knowledge A –Attitude and P –Practice
- KAP cannot show the nature of problem
- KAP is unable to answer WHY?
- Method: awareness improvement only
- FOAM: F –more focus on behavior and objective,
 - O –indicate Opportunities to change behavior;
 - A –indicate the Ability to change behavior;
- M —indicate the Motivation and barrier in changing behavior
- FOAM can show the nature of problem
- FOAM is able to answer WHY? and HOW?
- Method: In order to change behavior

Why do We need to Change Behavior?

Sustainable Development For Everybody

Energy Product and Use

- Awareness
- Natural Resource Degradation
- Ineffective use of equipment and energy consumption
- Inappropriate planning
- Strongly depend on conventional energy (nonrenewable energy)
- Not yet pay much attention on Renewable Energy

Why do We need to Change Behavior?

- Improve productivity by reducing waste
- Improve efficiency
- Improve economic benefits
- Waste prevent instead of waste treatment
- Apply for Environmental Standard
- Improve health and living condition
- Improve living standard

Why do We need to Change Behavior?

Cambodia Case:

- Difficult in operation of water reservations
- Increasing price of Oil and Gas
- Increasing of Power Demand due to global temperature rising
- Reducing emission requires high technology and big investment
- Electricity transmission/distribution systems are Overhead lines —increasing losses due to temperature rise.
- People do not understand well about Energy Reservation

Introduce Green Economic / Green Products

- Production, Distribution, Energy Consumption and Services Activities
- Above activities can improve the living standard but produce environmental impacts
- Green investment / green productivity: Consider on waste management, 3R (Recycle, Reuse, Reduce), Green Technology etc.,

Enhance producer responsibility →
 Polluter Pay's Principle

- Cleaner production → Reduce Emission
- Eco-industrial zones and Environmental Education: Enhance community awareness law, policy and regulations

Enhance producer responsibility →
 "Polluter Pay's Principle"

Why do Producers need to take responsibility?

- Only producers can reduce the product prices through input selection and recycle
- Only producers can decide to select raw materials
- Only producers can make decision on investment of pollution prevention and control technologies

Behavioral Change: Community Commitment
 "Role of Community"

- Awareness improvement of Community
- Provide information on energy use and support research activities in order to increase the energy efficiency, mitigate environmental pollution
- Participate in environmental protection campaigns, sustainable resource usage programs

- Behavioral Change: Using *Energy Saving Products*
- Behavioral Change: Create *Energy Saving Habits*

Light bulb (reduce 80% Energy): LED or CFL

Group Discussion

1. Behavioral Change: Using Natural Resources

2. Behavioral Change: Using *Energy Saving Products*

3. Behavioral Change: Create *Energy Saving Habits*

សូមអាត្

Thank